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Numerical analysis of the master equation
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Applied to the master equation, the usual numerical integration methods, such as Runge-Kutta method,
become inefficient when the rates associated with various transitions differ by several orders of magnitude. We
introduce an integration scheme that remains stable with much larger time increments than can be used in
standard methods. When only the stationary distribution is required, a direct iteration method is even more
rapid; this method may be extended to construct thequasistationarydistribution of a process with an absorbing
state. Applications to birth-and-death processes reveal gains in efficiency of two or more orders of magnitude.
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The master equation is the basic tool for describing M
kovian stochastic processes on a discrete state space, in
tinuous time @1,2#. Despite its central role in stochast
analysis in the physical and biological sciences, only a ha
ful of exactly soluble examples are known. Thus the need
integrate the master equation numerically arises freque
and with it the issue of computational efficiency.

Consider a Markov process with transition ratesWn,m
from statem to staten. In the master equation~ME!,

ṗn5(
n8

Wn,n8pn82pn(
n8

Wn8,n ~n50, . . . ,N!, ~1!

the factor(n8Wn8,n[wn multiplying pn can become large in
a typical birth-and-death process, whereWn8,n}n or some
higher power ofn. This poses a problem for numerical int
gration via the usual discretization schemes, such as
Runge-Kutta method~RKM!. Since instabilities appear whe
uwnDtu>1, we must use a small time increment,Dt
;1/(maxnwn), and convergence is slow. With some~but not
all! of the transition rates large, the ME is, in effect, astiff
system of differential equations, requiring special numeri
treatment@3#. In this note I introduce numerical integratio
schemes for the ME that are efficient when the transit
rates vary over a wide range, and an iteration method
eliminates the need for step-by-step integration, when o
the stationary~or quasi-stationary! distribution is required.
Simple but detailed examples are used to illustrate the m
ods; further applications will be reported elsewhere@4#. ~We
considerstationaryMarkov processes, i.e., time-independe
rates, although the method is not limited to this class
problem.!

We begin by writing the ME in the form

ṗn52wnpn1r n , ~2!

where

r n~ t !5(
n8

Wn,n8pn8~ t !. ~3!
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Note thatpn does not appear in the sum forr n , sinceWn,n
[0. Both wn and r n are non-negative.~In fact, wn is zero
only if staten is absorbing.! Integrating Eq.~2! we have

pn~ t !5e2wntpn~0!1E
0

t

dt8e2wn(t2t8)r n~ t8!. ~4!

This is only a formal solution, since we need thepn(t) to
evaluater n , but it is a useful starting point for approxima
tions. If we adopt a time incrementDt such thatr n(t) is
approximately constant over this interval, then we have

pn~Dt !.e2wnDtpn~0!1@12e2wnDt#
r n~0!

wn
. ~5!

This relation can then be iterated: we usepn(Dt) to evaluate
r n at the start of the second interval, and thereby fi
pn(2Dt), and so on. This simple formal integration~FI!
scheme, analogous to Euler’s method for direct numer
integration, already represents a significant advantage
the usual approaches when some of thewn are large. The
reason is that the exponential factor is already included in
solution, whereas in the usual discretizion methods it ha
be constructed term by term, in powers ofwnDt.

Suppose that the ME of interest possesses a unique, s
stationary solution p̄n . For a stationary solution,p̄n

5 r̄ n /wn , wherer̄ n is given by Eq.~3! with pn5 p̄n . Setting
pn5 p̄n on the right-hand side~rhs! of Eq. ~5! we immedi-
ately see thatp̄n is a stationary solution of our iteratio
method. To investigate the linear stability of the stationa
solution, letpn5 p̄n1dn . According to the ME,

ḋn5(
n8

Wn,n8dn82dn(
n8

Wn8,n , ~6!

or, in matrix notation,

d

dt
d5Sd, ~7!

whereSn,m5Wn,m for nÞm andSn,n52wn . Since, by hy-
pothesis, the stationary solutiond50 is stable,S has one
zero eigenvalue and all others negative.
©2002 The American Physical Society01-1
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If we insert pn5 p̄n1dn in the rhs of Eq.~5! ~so thatr n

5 r̄ n1(n8Wn,n8dn8), we find

d~ t1Dt !5Td~ t !, ~8!

where Tn,m5(12e2wnDt)Wn,m /wn for nÞm, and Tn,n
5e2wnDt. Expanding to first order inDt, we see that Eq.~7!
applies in this case as well, so the stationary solution
stable if it is so for the original ME.

We refer to the integration method embodied in relat
Eq. ~5! as a ‘‘first-order FI scheme’’ since the error in th
solution pn(t) is proportional~for fixed t) to Dt. „In each
step, the error incurred in treatingr n as constant isO(Dt)2

@since in factr n(Dt)5r n(0)1r n8(0)Dt1•••#, and we re-
quire N5t/Dt steps.… An obvious way to improve accuracy
analogous to going from Euler’s method to the midpoint~or
second-order Runge-Kutta! method, is to replace the as
sumption of a constantr n on the interval@ t,t1Dt# with a
linear approximation. To do this we first use Eq.~5! to find
pn(t1Dt), and then estimate ther n(t1Dt) using these val-
ues. Then we form the linear approximation

r n~s!.r n~ t !1~s2t !r n8 ~ t<s<t1Dt !, ~9!

where

r n85
r n~ t1Dt !2r n~ t !

Dt
. ~10!

Inserting this in the formal solution, Eq.~4!, we find

pn~ t1Dt !.e2wnDtpn~ t !1@12e2wnDt#
r n~ t !

wn

1FDt2
12e2wnDt

wn
G r n8

wn
. ~11!

~Note that we do not use the expression fordrn /dt that
follows from the master equation in place ofr n8 , since it does
not, in general, represent the behavior ofr n over a substantia
time interval.! The total error associated with the secon
order FI procedure is}(Dt)2. Further improvement is
clearly possible, by introducing higher order polynomial a
proximations to ther n , but the second-order scheme is qu
adequate for the applications considered here. The erro
timates apply for a fixed, finite time; the error fort→` is
zero, if the system possesses a unique stationary distribu

A tremendous simplification and speedup is possible
one only requires thestationaryprobability distribution. The
relation p̄n5 r̄ n /wn suggests an iterative procedure of t
form

pn85apn1~12a!
r n

wn
, ~12!

where 0,a,1 is a parameter. We expectpn8 to converge to

Ap̄n , where the factorA depends ona and on the initial
distribution.
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Some insight into the choice ofa is afforded by the simple
example of a two-state system with transition ratesW1,05l
andW0,15m. The evolution of the probability distribution is
given ~in matrix notation! by p85Mp, where

M5S a ~12a!
m

l

~12a!
l

m
a

D . ~13!

Matrix M has eigenvalues 1 and 2a21. Thus the iterative
procedure converges to a multiple of the stationary distri
tion, (m,l) for 0,a,1, and is instantaneous fora51/2.

A similar analysis of the three-state processesn
50,1,2), with rates~a! Wn11,n5g, Wn21,n51, and ~b!
Wn11,n5g, W2,05g2, and Wn,m51 for n,m, yields a
51/3 as the optimal choice.~By optimal choice we mean the
value that minimizes maxiuviu, the v i being the eigenvalues
of M, excluding, of coursev0[1, associated with the sta
tionary distribution.! These results suggest that for proces
with a large number of states, even smaller values ofa may
be advantageous. The numerical examples discussed b
support this notion.

A simple modification of the iterative scheme, Eq.~12!,
generates thequasistationarydistribution~if such exists! of a
Markov processs with an absorbing state. Consider a pro
on the statesn50,1,2, . . . ,N with n50 absorbing, i.e.,
Wn,0[0 for all n, while W0,n for at least onen.0. ~It seems
reasonable to exclude manifestly transient states, in o
words, we assume that for eachn, Wn,m.0 for at least one
m.! In this case the stationary state isp̄n5dn,0 , but it is
possible that the probability distribution,conditioned on sur-
vival, attains a stationary form, that is, for long timespn(t)
→C(t)qn (n.0), where theqn are time independent. Suc
quasistationary distributions@5# arise in birth-and-death pro
cesses with saturation, for example the Malthus-Verhu
process or the contact process@4#.

The defining feature of the quasistationary distribution
that relative probabilitiespn(t)/pm(t) (n, m.0) are con-
stant, or equivalently,ṗn /pn5k, constant and independen
of n for n>1. Suppose the probability distribution has a
tained a quasistationary form at some timet, and that at this
instant the distribution is normalized so:(n>1pn(t)51. Us-
ing Eq. ~2! we haver n5(k1wn)pn , and summing onn
>1 yields

k5 (
n>1

ṗn52 (
n>1

W0,npn[2r 0 . ~14!

(r 0 is the decay rate of the survival probability in the qu
sistationary regime.! Thus we find that in the quasistationa
state,

pn5
r n

wn2r 0
~n>1!. ~15!

This relation suggests that we iterate as follows:
1-2
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pn85apn1~12a!
r n

wn2r 0
. ~16!

The new distributionp8 should be normalized after eac
iteration, since Eq.~15! assumes this property.@If r 050 the
process of course possesses a true stationary distribution
Eq. ~16! reduces to Eq.~12!.# We have verified that this
scheme converges to the quasistationary distribution m
more rapidly than via integration of the ME.

As a first example we consider the nonlinear one-s
process~on statesn51,2,3, . . . ), with nonzero transition
rates,

Wn21,n5n~n21!, Wn11,n5l. ~17!

This represents the coagulation processA1A→A with addi-
tion of speciesA at ratel, in a well-stirred system. In Fig. 1
we compare the mean population size^n& t as furnished by
integration of the ME via a fourth-order RKM~solid line!
with the second-order FI scheme, Eq.~11!, ~open circles!.
@Here l5100, pn(0)5dn,1 , and we have setpn(t)[0 for
n.100.# The results are nearly identical, but the RKM r
quires an integration step ofDt<231024 for stability,
whereas the FI integration usesDt50.002. The latter yields
^n& t with a relative error of less than 0.8%, the largest d
viation occurring at relatively short times.~As noted above,
the stationary values are identical in all cases.! To maintain
fidelity to the solution at short, as well as long times, o
may use the FI with an adjustable time step (1 in Fig. 1!,
such thatr 8* Dt is small, wherer 8* 5maxn$rn8%. For example,
using the second-order FI with a time step ofDt50.0005
10.02/(11r 8* ), the relative error is reduced to<0.06%,
while the average time step over the region of interes
0.0024.

Comparison of the stationary distributions forl5400,
obtained via the RKM, and by iteration of Eq.~12!, reveals

FIG. 1. Mean population̂ n& versus time in the coagulatio
process, Eq.~17!, with l5100, using Runge-Kutta integratio
~solid line!, the second-order FI scheme with a fixed time s
~circles!, and with a variable time step, as described in the te
(1).
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that they are identical to within one part in 105. In this case,
the distribution converges~such that the error in̂ n& t is
,10210), after about 900 iterations, when we usea51/2. As
a is reduced, the number of iterations required falls stead
in fact, the procedure converges even fora50, after only
460 steps.

Our second example is a multistep generalization of
Malthus-Verhulst process, with transition rates

Wm,n5H n@11m~n21!#eg(m2n11), m,n,

lneg(n2m11), m.n,

0, m5n,

~18!

for n, m50,1,2, . . . . ~Thus transition rates between statesn
and m fall off }exp@2gum2nu#. We choose this example t
show that the methods proposed here are not limited to o
step processes, which admit a relatively simple analy
@1,4#.! In this casen50 is absorbing. Figure 2 compares th
quasistationary distribution forl53, m50.1, andg51, ob-
tained via the RKM~with Dt51024; larger values produce
instability!, with iteration of Eq.~16!. As is clear from the
plot, the results are identical in every detail. The RKM r
quires about 1270 s of CPU time on a DEC-alpha works
tion to converge to the quasistationary distribution; the
method requires about 50 s. Iteration of Eq.~16!, ~with a
50.5), by contrast, converges in 9 s~about 1600 steps!. Re-
ducing parametera to 0.1 yields convergence in just 90
steps~5 s CPU time!, and in 815 steps fora50.

The steady decrease in computation time as we redua
leads one to ask whether it is possible to usea negative.
Iteration of Eq.~16! with a,0 does not work, as negativ
probabilities are generated, but we can exclude these by w
ing

pn85maxF0, apn1~12a!
r n

wn2r 0
G , ~19!

FIG. 2. Quasistationary probability distribution in the gener
ized Malthus-Verhulst process, Eq.~18!, with l53, m50.1, and
g51. Solid line, RKM;1, direct iteration of Eq.~16!.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 65 047701
This functions even for negativea, converging, in the presen
case, after about 630 steps whena520.3. For a<20.4,
however, the scheme does not converge. On the other h
in the first example@i.e., rates given by Eq.~17!#, using a
,0 does not offer any advantage overa50.

We conclude from these and other examples with la
numbers of states@4#, that a.0 generally yields rapid con
vergence, but that some amount of experimenting~for ex-
ample, with negativea values! may reduce computation tim
nd

er
-

04770
nd,

e

further, in particular cases. But even without such optimi
tion, the iterative schemes of Eqs.~12! and~16! yield econo-
mies in computation time of two or more orders of mag
tude, compared to conventional integration methods. As
number of variables and/or the disparity in the magnitudes
the transition rates increases, direct iteration and the
scheme become ever more valuable.
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