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Numerical analysis of the master equation
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Applied to the master equation, the usual numerical integration methods, such as Runge-Kutta method,
become inefficient when the rates associated with various transitions differ by several orders of magnitude. We
introduce an integration scheme that remains stable with much larger time increments than can be used in
standard methods. When only the stationary distribution is required, a direct iteration method is even more
rapid; this method may be extended to constructiiasistationarydistribution of a process with an absorbing
state. Applications to birth-and-death processes reveal gains in efficiency of two or more orders of magnitude.
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The master equation is the basic tool for describing Mar-Note thatp, does not appear in the sum fof, sinceW, ,
kovian stochastic processes on a discrete state space, in cead. Bothw, andr,, are non-negative(ln fact, w,, is zero
tinuous time[1,2]. Despite its central role in stochastic only if staten is absorbing. Integrating Eq.(2) we have
analysis in the physical and biological sciences, only a hand-
ful of exactly soluble examples are known. Thus the need to
integrate the master equation numerically arises frequently,
and with it the issue of computational efficiency.

Consider a Markov process with transition raMg ,,  This is only a formal solution, since we need thg(t) to
from statem to staten. In the master equatiofME), evaluater,,, but it is a useful starting point for approxima-
tions. If we adopt a time incremert such thatr,(t) is
approximately constant over this interval, then we have

iplyi i po( ) e, (0) + [1— e 1L
the factor>, W, ,=w, multiplying p,, can become large in e

a typical birth-and-death process, wheig, ,>n or some , , ) _
higher power ofn. This poses a problem for numerical inte- This relation can then be |terated: we yBgAt) to evaluate'
gration via the usual discretization schemes, such as then at the start of the second interval, and thereby find
Runge-Kutta methoRKM). Since instabilities appear when Pn(2At), and so on. This simple formal integratidfl)
|w,At|=1, we must use a small time incrementt scheme, analogous to Euler's method for direct numerical
~1/(maxw,), and convergence is slow. With sorfleut not integration, already represents a significant advantage over
all) of the transition rates large, the ME is, in effectstiff ~ the usual approaches when some of Wieare large. The
system of differential equations, requiring special numerical®2son is that the exponential factor is already included in the
treatment3]. In this note I introduce numerical integration solution, whereas in the usual discretizion methods it has to
schemes for the ME that are efficient when the transitiorP® constructed term by term, in powerswgfAt.
rates vary over a wide range, and an iteration method that Suppose that the ME of interest possesses a unique, stable
eliminates the need for step-by-step integration, when onlgtationary solutionp,. For a stationary solution,p,
th_e stationary(o_r quasi—stationar)ydistributign is required.  =r_/w,, wherer, is given by Eq.3) with p,=p,. Setting
Simple butdetale exarles are s o (e he Mt =p, on the righthand idens of £q. (5 we immed:

: bp P ately see thatp, is a stationary solution of our iteration

considerstationaryMarkov processes, i.e., time-independent ) ; . e i
rates, although the method is not limited to this class of "ethod- To investigate the linear stability of the stationary
problem) solution, letp,=p,+ 6, . According to the ME,

We begin by writing the ME in the form

t ’
Pu(t)=e""n'p,(0) + fodt’e*Wn“*t . @

Ibn=2 Wn,n’pn’_pnz Wn’,n (n=0,...N), (1
n’ n’

©)

. SnZE Wn,n’5n’_5n2 Wit ins (6)
Pn=—WnPnrtrp, 2 n’ n’
where or, in matrix notation,
d 6=S6 (7)
Fa(t)= 2 Wy orPpr (D). 3) dt® =
n/
whereS, =W, , for n¥m andS, ,= —w,. Since, by hy-
pothesis, the stationary solutiof=0 is stable,S has one
*Electronic address: dickman@fisica.ufmg.br zero eigenvalue and all others negative.
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_If we insert pnzaﬁr S, in the rhs of Eq.(5) (so thatr,
=+ 20 Wy 6y), we find
S(t+At)=T4s(1), (8)

where Tn,m=(1—e“’Vr1At)W,Lm/Wn for n#m, and T,
=e~"n!_ Expanding to first order int, we see that Eq(7)

applies in this case as well, so the stationary solution is M=

stable if it is so for the original ME.

We refer to the integration method embodied in relation
Eq. (5) as a “first-order FI scheme” since the error in the

solution p,(t) is proportional(for fixed t) to At. (In each
step, the error incurred in treating as constant i©(At)?
[since in factr,(At)=r,(0)+r/(0)At+---], and we re-

quire N=t/At steps) An obvious way to improve accuracy,

analogous to going from Euler’s method to the midpdgort

second-order Runge-Kujtanethod, is to replace the as-

sumption of a constant, on the interval[t,t+At] with a
linear approximation. To do this we first use E§) to find
p,(t+At), and then estimate thg,(t+ At) using these val-
ues. Then we form the linear approximation

rn(s)=rp(t)+(s—t)r, (t<ss<t+At), (9)
where
. Ma(tHAD =1y (1)
rn_A—t- (10
Inserting this in the formal solution, E¢4), we find
ry(t
pn<t+At>=e‘Wn“pn(t>+[1—e-WnMJ%
n
1—e Wndt)yr/
+ At —— | —. (12)
W, W,

(Note that we do not use the expression tor,/dt that
follows from the master equation in placergf, since it does
not, in general, represent the behavior pbver a substantial

time interval) The total error associated with the second-

order FlI procedure isx(At)2. Further improvement is
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Some insight into the choice afis afforded by the simple
example of a two-state system with transition rafés,=\
andW, ;= u. The evolution of the probability distribution is
given (in matrix notation by p’=Mp, where

a  (1-at
(13
A
(1-a)— a
“

Matrix M has eigenvalues 1 anda2 1. Thus the iterative
procedure converges to a multiple of the stationary distribu-
tion, (u,\) for 0<a<1, and is instantaneous far=1/2.

A similar analysis of the three-state processas (
=0,1,2), with rates(@ Wpi1,=7v W,-1,=1, and (b)
Whiin=7 Woo=7%% and W, ,=1 for n<m, yields a
=1/3 as the optimal choic€By optimal choice we mean the
value that minimizes ma;|, the »; being the eigenvalues
of M, excluding, of courseng=1, associated with the sta-
tionary distribution). These results suggest that for processes
with a large number of states, even smaller valuea ofay
be advantageous. The numerical examples discussed below
support this notion.

A simple modification of the iterative scheme, EG2),
generates thguasistationandistribution (if such exist$ of a
Markov processs with an absorbing state. Consider a process
on the statesn=0,1,2...,N with n=0 absorbing, i.e.,

W, o=0 for all n, while W, for at least ong>0. (It seems
reasonable to exclude manifestly transient states, in other
words, we assume that for eaohW, ,,>0 for at least one

m.) In this case the stationary state pg=4J,o, but it is
possible that the probability distributioopnditioned on sur-
vival, attains a stationary form, that is, for long timgg(t)
—C(t)g, (n>0), where theg, are time independent. Such
guasistationary distributior{$] arise in birth-and-death pro-
cesses with saturation, for example the Malthus-Verhulst
process or the contact procdds.

The defining feature of the quasistationary distribution is
that relative probabilitiep,(t)/p,(t) (n, m>0) are con-

stant, or equivalentlyp,/p,= , constant and independent
of n for n=1. Suppose the probability distribution has at-

clearly possible, by introducing higher order polynomial ap-ysineq a quasistationary form at some titnand that at this

proximations to the ,, but the second-order scheme is quite
adequate for the applications considered here. The error eﬁfg Eq. (2) we haver,

timates apply for a fixed, finite time; the error foroo is

instant the distribution is normalized sb;-.1p,(t)=1. Us-
=(k+W,)p,, and summing om
=1 yields

zerq if the system possesses a unique stationary distribution.
A tremendous simplification and speedup is possible if
one only requires thstationaryprobability distribution. The

relation Esr_n/wn suggests an iterative procedure of the
form

bn:_nzl WO,nan_rO- (14

(ro is the decay rate of the survival probability in the qua-
sistationary regime.Thus we find that in the quasistationary

r
pr=ap,*(1-a) %, (19 st
n
rn
where 0<a<1 is a parameter. We expeg} to converge to S vya— (n=1). (15

Aﬁ, where the factorA depends ora and on the initial

distribution. This relation suggests that we iterate as follows:
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FIG. 1. Mean populationn) versus time in the coagulation
process, Eq.17), with A=100, using Runge-Kutta integration
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FIG. 2. Quasistationary probability distribution in the general-

(solid line), the second-order FI scheme with a fixed time stepized Malthus-Verhulst process, E(L8), with A=3, 4=0.1, and

(circles, and with a variable time step, as described in the text

(+).

Mn

pn=ap,+(1—a) (16)

Wn rO'

The new distributionp” should be normalized after each
iteration, since Eq(15) assumes this propertylf ro=0 the

process of course possesses a true stationary distribution amj

Eq. (16) reduces to Eq(12).] We have verified that this

scheme converges to the quasistationary distribution much

more rapidly than via integration of the ME.

As a first example we consider the nonlinear one-step

process(on statesn=1,2,3...), with nonzero transition
rates,

Wi—ip=n(n—1), Wpi1a=\. 17
This represents the coagulation procAssA— A with addi-
tion of specied at rate\, in a well-stirred system. In Fig. 1
we compare the mean population siz®, as furnished by
integration of the ME via a fourth-order RKNbkolid line)
with the second-order FI scheme, E3l), (open circles
[Here =100, p,(0)=46,4, and we have sgb,(t)=0 for
n>100] The results are nearly identical, but the RKM re-
quires an integration step oAt<2x10“ for stability,
whereas the Fl integration usA$=0.002. The latter yields
(n), with a relative error of less than 0.8%, the largest de
viation occurring at relatively short time6As noted above,
the stationary values are identical in all casd® maintain

fidelity to the solution at short, as well as long times, one

may use the FI with an adjustable time step {n Fig. 1),

such thar '* At is small, where '* = max{r,}. For example,
using the second-order FI with a time step &f=0.0005
+0.02/(1+r'*), the relative error is reduced t€0.06%,

while the average time step over the region of interest is

0.0024.
Comparison of the stationary distributions far=400,
obtained via the RKM, and by iteration of E(lL2), reveals

y=1. Solid line, RKM; +, direct iteration of Eq(16).

that they are identical to within one part in®10n this case,
the distribution convergegsuch that the error inn), is
<1019, after about 900 iterations, when we wse 1/2. As

a is reduced, the number of iterations required falls steadily;
in fact, the procedure converges even &+ 0, after only
460 steps.

Our second example is a multistep generalization of the
althus-Verhulst process, with transition rates

n[1+u(n—1)]e™ "1 m<n,
Wi p=1{ Aner®=mth), m>n, (18)
0, m=n,
forn, m=0,1,2 .. ..(Thus transition rates between states

andm fall off «exd —1m—n|]. We choose this example to
show that the methods proposed here are not limited to one-
step processes, which admit a relatively simple analysis
[1,4].) In this casen=0 is absorbing. Figure 2 compares the
quasistationary distribution for=3, ©=0.1, andy=1, ob-
tained via the RKM(with At=10"%; larger values produce
instability), with iteration of Eq.(16). As is clear from the
plot, the results are identical in every detail. The RKM re-
quires about 1270 s of CPU time on a DEC-alpha worksta-
tion to converge to the quasistationary distribution; the FI
method requires about 50 s. Iteration of Efj6), (with a

=0.5), by contrast, converges in 9about 1600 stepsRe-
ducing parametern to 0.1 yields convergence in just 900
steps(5 s CPU time, and in 815 steps faa=0.

The steady decrease in computation time as we reduce
leads one to ask whether it is possible to @saegative
Iteration of Eq.(16) with a<0 does not work, as negative
probabilities are generated, but we can exclude these by writ-

ing

r
pr’]zma{o, apn+(l—a)W —nro ) (19
n
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This functions even for negativg converging, in the present further, in particular cases. But even without such optimiza-
case, after about 630 steps whas —0.3. Fora<—0.4, tion, the iterative schemes of Eq42) and(16) yield econo-
however, the scheme does not converge. On the other handjes in computation time of two or more orders of magni-
in the first examp|di_e_’ rates given by qu?)]’ usinga tude, Compal’e_d to Conventlonal_lnteg_rat_lon methOdS As the
<0 does not offer any advantage o 0. number of yanables a_nd/or the dlsparlty.m thg magnitudes of
We conclude from these and other examples with Iargéhe transition rates increases, direct iteration and the FI
numbers of statept], thata=0 generally yields rapid con- scheme become ever more valuable.
vergence, but that some amount of experimentifoy ex- | thank Dani ben-Avraham for helpful comments. This
ample, with negativa values may reduce computation time work was supported by CNPq, Brazil.
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